# United States Department of the Interior 

NATIONAL PARK SERVICE<br>INTERMOUNTAIN REGION<br>12795 West Alameda Parkway<br>P.O. Box 25287<br>Denver, Colorado 80225-0287



IMRO-RSS-COR (1241)

# VIA ELECTRONIC MAIL: NO HARD COPY TO FOLLOW Memorandum 

To: Wayne Pullan, Regional Director, Upper Colorado Basin, Bureau of Reclamation Kathleen Callister, LTEMP SEIS Project Manager, Bureau of Reclamation Bill Stewart, Adaptive Management Group Chief, Bureau of Reclamation

From: Kate Hammond, Regional Director
Department of Interior Regions 6, 7, \& 8
National Park Service
Subject: National Park Service Comments on the Bureau of Reclamation February 2024 "Supplemental Environmental Impact Statement for the December 2016 Record of Decision Entitled Glen Canyon Dam Long-Term Experimental and Management Plan"

The National Park Service (NPS) appreciates the opportunity to provide input on the February 2024 Public Draft of the "Supplemental Environmental Impact Statement for the December 2016 Record of Decision Entitled Glen Canyon Dam Long-Term Experimental and Management Plan" (LTEMP/SEIS) prepared by the Bureau of Reclamation (Reclamation). As a cooperating agency pursuant to the National Environmental Policy Act (NEPA), NPS also appreciates the opportunity to provide special expertise and comments on previous drafts and to provide further input on this draft SEIS. NPS provides the following comments:

## Urgency and Timeline:

- NPS hopes that this process can stay on track and that Reclamation chooses the most effective alternative to comply with the 1992 Grand Canyon Protection Act (GCPA) to prevent irreversible and detrimental impacts to the native fish populations, the federally threatened humpback chub and the federally endangered razorback sucker within Grand Canyon National Park. We commend these efforts to expedite and prioritize this planning process despite the many other planning priorities in the Colorado River ecosystem.
- Completing this process by late spring 2024 is imperative to prevent Smallmouth Bass (SMB) establishment below the Glen Canyon Dam (GCD) on national park units, and to protect native and federally listed fish, (humpback chub and razorback sucker), on park units when river temperatures increase in the summer. NPS agrees that Reclamation should act with urgency, using the most effective bypass alternatives in June 2024 to mitigate invading populations close to GCD. NPS has been advised by U.S. Fish and Wildlife Service (USFWS) fisheries experts in the Upper Colorado River Basin, who have been working to control SMB populations for over 20 years and watching the impact of this predator on native fish and amphibians in higher turbidity waters, that agencies should not delay action and should instead act with the most
effective tools by this summer. A recent paper from a group of researchers who work in the upper basin stated:
- There is substantial overlap in the thermal suitability of river segments for growth of warmwater native and nonnative fishes across the basin, and current evidence suggests nonnative species have a competitive or predatory advantage over native species in places where their ranges overlap (Olden et al. 2006, Johnson et al. 2008). Our analysis demonstrates that nonnative species in the basin have responded more strongly to recent river warming than native species. Thus, in the absence of effective management interventions, future warming is likely to disproportionately benefit nonnative species to the detriment of native species (Dibble et. al 2020).
- Currently, this SEIS states that SMB operations would end in 2027. That is assuming that other approaches such as a thermal curtain may be available and effective by then. However, given uncertainties, NPS recommends extending the timeframe for the SMB operations beyond 2027 through the lifetime of the original LTEMP, in case other tools (temperature curtain or higher Powell elevation) are not available or prove ineffective by 2027. If that happens, and if the elevation of Lake Powell falls lower and release temperatures return to over 15.5C, these bypass flow tools would need to be continued to address the mandates of the GCPA and the Endangered Species Act (ESA).


## Non-Bypass Alternative:

- NPS believes the Non-Bypass alternative does not meet the purpose and need of the SEIS based on the 2022 evaluation of the USFWS-led multiagency SMB Task Force, the subsequent analysis performed in the development of the Reclamation SMB Environmental Assessment (EA), and the modeling analysis presented in this LTEMP SEIS document. The need for the SEIS is "...to disrupt the establishment of smallmouth bass below Glen Canyon Dam by limiting additional recruitment, which could threaten populations of threatened humpback chub below the dam"; however, based on SMB population growth modeling (lambda), the Non-Bypass alternative is not effective. The purpose of the plan is to prevent the SMB population from growing and expanding during summers when dam release water temperatures are over 15.5 C . A lambda less than 1.0 would indicate the alternative is creating conditions for the SMB population to decline whereas a lambda greater than one indicates the alternative is failing to prevent the growth of the population. This Non-Bypass alternative fails to achieve a lambda less than 1 in warmer water summers and instead shows growth of the population with a lambda factor of about 1.5-2.0. The current analysis in the plan lumps all the results together for both warm and colder water summers, but when these results are split out, it is clear this alternative does not perform significantly different from no action, which also fails to stop the SMB from reproducing. Reclamation has evidence in this SEIS for dismissal of this alternative as it does not meet the published purpose and need.
- Concern regarding significant impacts to downstream resources and recreation. This analysis shows that the Non-Bypass tool may have many impacts that would make it incompatible with the GCPA's mandate to protect, mitigate adverse effects to, and improve the natural and cultural resources and recreation below the GCD. The Non-Bypass alternative would have significant fluctuations from 2,000 cfs up to 27,000 cfs occurring on a weekly basis, potentially for up to 26 times throughout the summer. Given the extent of impacts to downstream resources below, we believe implementing Non-Bypass flows would not be consistent with the intent of the GCPA due to the following:
- Sediment impacts: When the effects of the Non-Bypass alternative are split out for those months or years in which the Non-Bypass tool is actually used, they show increased sand mass balance and beach erosion and decreases in the frequency of High Flow Experiments (HFEs). These effects will decrease the natural aeolian transport processes in the canyon, threaten the protection of archeological sites, and reduce the area of recreational camping beaches, while also directly impacting the rafting recreation with flows lower than what are currently allowed under the 2016 LTEMP EIS.
- Recreation impacts: While the plan currently mentions some impact to recreation from the non-bypass flows, it fails to articulate that these flows might occur on a weekly basis. For guided boating in the Glen Canyon National Recreation Area (NRA), this would likely mean shutting down concessions during those days. While that is similar to the impacts of an HFE, an HFE occurs once a year, whereas these may occur more than 20 times a summer, which is a more significant impact.
- Impacts to Native Amphibians and invertebrates: The current analysis fails to mention impacts to native amphibians. In locations such as the river mile-12 slough, we may already be seeing SMB prey upon native salamanders and other amphibians and invertebrates, and based on research in other river systems where SMB have invaded, these impacts would be likely to increase throughout the system below the dam if alternatives fail to prevent the establishment of SMB (Sanderson et al. 2009, Kiesecker and Blaustein 1998, Hayes and Jennings 1986; Dill and Cordone 1997).
- Food base and direct Native Fish Impacts: According to the SEIS routing chart, these frequent and large river fluctuations under the non-bypass alternative persist down to the Little Colorado River (LCR) and beyond, and may result in desiccation of macroinvertebrate resources, ultimately impacting food base in the system. These significant fluctuations during the summer through Marble Canyon would also be likely to impact native fish, including the humpback chub aggregation at river mile 30.
- Rainbow Trout Fishery Impacts: Non-bypass fluctuations are also likely to impact the rainbow trout fishery in Lees Ferry which is already at very low population levels and facing more stressors than it ever has. This alternative fails to prevent the low dissolved oxygen levels and elevated temperatures that occur in the worst 17-20\% of the traces run in the modeling scenarios, which will increasingly stress the rainbow trout.
- Ineffective at preventing the establishment of SMB. This alternative also fails to reduce the growth and distribution of the warm water invasive fish populations that threaten native aquatic resources. These types of impacts are what led to the 1995 EIS that moved dam operations away from large daily fluctuations to comply with the GCPA. NPS encourages Reclamation to consider dismissal of this alternative given its inconsistency with the intent of the GCPA.
- Engineering constraints and remodeling: The Non-Bypass Alternative was designed with low flows down to 2,000 cfs. NPS understands there may be new potential operational restrictions of maintaining penstock flows of at least $3,000 \mathrm{cfs}$ or perhaps even $3,500 \mathrm{cfs}$; If this alternative is not dismissed then it may require further analysis in the SEIS to show how those guidelines may affect the modeled lambdas.


## Further Hydropower Analysis:

- Bypass alternatives have reasonably low impact levels to hydropower: This document includes hydropower value loss estimates that indicate a wide range in fiscal impacts depending on the annual conditions, which include reservoir elevation, temperature profile and the distance down
the river that is chosen for the cooling effect based on the distribution of SMB. This analysis shows that the maximum impacts from the bypass alternatives would result in about $1-2 \%$ of hydropower value reduction or about $\$ 10-16 \mathrm{M}$. For a measure that may be needed to prevent the loss of the native fish species in the Grand Canyon and protect the federally threatened humpback chub, this suggests that these bypass alternatives are viable approaches that would have minimal value loss and would be consistent with the GCPA mandate to operate the dam in a manner to protect, mitigate the adverse effects to, and improve the natural and cultural resources and recreation downstream of GCD.
- Hydropower modeling transparency: NPS understands that much of the hydropower modeling in this document was performed by the Grand Canyon Monitoring and Research Center (GCMRC). The assumptions and methods appear very clear and transparent, but there has been substantial criticism of this work from hydropower interests. NPS understands that much of this controversy is because GCMRC adjusted future energy costs to be more realistic. The Argus Forward Mid-Market projections for the Palo Verde hub are used by Western Area Power Administration (WAPA) and were also used by GCMRC, but because these projections include a risk premium, these were adjusted to be more representative of the marginal cost of energy by GCMRC using actual prices from February 2000 through November 2023 and the Argus Forward Mid-Market projections. NPS encourages Reclamation to continue to use these estimates from GCMRC to ensure that cost impacts to hydropower are fairly and objectively estimated. NPS understands WAPA will be submitting another cost estimate during this comment process using a different method, and hope this estimate is provided with sufficient time for review and with a clear and transparent set of assumptions, that it is peer reviewed to ensure objectivity, and can be weighed in relation these estimates from GCMRC. To be objective information for this SEIS, we hope any new analysis includes similar adjustments to the GMCRC analysis to be more representative of the marginal cost of energy using methods to correct the Argus Forward Mid-Market projections.


## Support for HFE Protocol Adjustments:

- HFE adjustments will retain the original intent of the LTEMP and comply with the GCPA: NPS supports and appreciates the adjustments that Reclamation is making to the HFE Protocol in this SEIS. These changes will help allow for HFEs to be implemented with a frequency close to what was intended in the original LTEMP EIS even when water levels are lower. These changes will also shift the HFEs to more natural timing with more occurring between April and June under certain circumstance which is closer the historic timing of peak flows and more likely to be beneficial to the native species that evolved in this system. NPS appreciates Reclamation's commitment to the intent of the GCPA and to following through on the recommendations from GCMRC and the Flow Ad hoc group of the Adaptive Management Work Group (AMWG).


## Consideration of a Combined Alternative:

- Possible combination of alternative options: NPS understands that, due to discussions occurring, it may make sense to combine a suite of alternatives into an umbrella or menuoriented alternative where a particular option could be chosen to fit the conditions of a specific year. NPS is not opposed to this approach as it may increase flexibility; however, we would strongly suggest that only tools that are able to meet the purpose and need of discontinuing the establishment of SMB are combined into an umbrella alternative. This would include the 4 alternatives that use bypass. If tools do not reduce lambda below 1, then they are not effective and should not be considered at this point in the invasion curve. The Non-Bypass alternative,
when lambda results are averaged for the months or years when the tool is actually needed and used (when release temperatures are greater than 15.5C) does not reduce lambda below 1 , so it does not in fact disrupt the establishment of smallmouth bass. For this reason, this alternative should not be included. It is critical, particularly in the summer of 2024, to use the most effective tools available while SMB is still limited in distribution to Lees Ferry and the most eastern portion of Marble Canyon. Many of these tools will be less effective if the population expands during this early phase in the invasion curve. NPS recommends prioritizing the use of tools that will be the most effective the earliest in the process based on the lambda values. If there is the possibility that Reclamation may not choose to use the most effective tool during the first year (2024), then this SEIS should include a cost analysis of how much more bypass cooling might cost in the $2^{\text {nd }}$ year (2025) if SMB distribution expands further downriver.

Below are additional technical comments on how NPS recommends that data be organized and specific areas where additional citations or analysis is needed:

## Averaging problem in the analysis of the modeling

- Not all resources are being compared the same way and this may cause inconsistent comparisons that underestimate the impacts of some alternatives on some resources. NPS' understanding of the modeling is that there were 30 traces used; approximately 6 of the traces had years where release temperatures were greater than 15.5C and about 24 traces where temperatures stayed below 15.5C. Resources were analyzed to look at the effects of the alternative as averaged over all traces. Since the alternatives have tools that are only used in months where the temperature exceeds 15.5 C , averaging across all the traces means we are averaging out the actual effects with $83 \%$ of the runs that didn't use the tool. That would mean we are only really seeing about $1 / 5$ of the impact, rather than the actual impact that would be experienced if the future was actually a trace where release temperature was hotter. In years where these tools aren't needed, the costs and impacts of the tools is zero because this would be no action. For hydropower, the analysis broke out the effects for the months where the tools were used to show the real impact of use of those tools in Table 3-26. NPS believes this to be the correct way to look at all impacts. In comparison, this same type of table should be used to assess these impacts in the months or years when the tools are actually used:
- Lambda for SMB population growth: this should be expressed in table form similar to 3-26, as an average lambda for the months in which the tools are used (when temp > 15.5 C ). This should be considered as months because even years that the tools are used may vary significantly if the tool is only used for one month vs. when it is used for 5 months; however, GCMRC may have reasons why they believe year might be more appropriate. In either circumstance, NPS would strongly suggest not doing this by trace, which would lump together 4 years when in fact the tool might only be used in one year of the four.
- Frequency and Duration of HFEs: NPS recommends this be in table form, again broken out for the years when the tools are used only because in the years they aren't used, it would look and function exactly like no action. Currently, the way it is presented, it looks like there are no differences in HFEs amongst the alternatives, but NPS thinks that when this is split out clearly based on the years the tools are used, it will show some marked differences.
- Sand Mass Balance and Beach Building metrics: both need to be split out for the months or at least the years in which the tools are used (temp>15.5C), which would show the full effects of the alternatives on these metrics. GCMRC may have to advise whether months or years would be more appropriate, and if years whether those should start and end July 1 because of the HFE accounting window.
- Dissolved Oxygen: NPS recommends this data and graph be broken out to show the effects to dissolved oxygen for the years in which the tools are used, otherwise this is mostly comparing the effects of no action to no action. NPS believes there will be a more distinct difference that will emerge on the alternatives with bypass cooling versus those without. Again, that is a fair way to compare similar to the hydropower table 3-26, because we don't actually experience the average of the traces in the future, rather, it is only the future trace that occurs.


## Other modeling presentation issues

- Representative Summer-Long Releases for each Alternative: In chapter 2, NPS sees the need for a graph showing the alternative releases for the entire summer (May1-Oct 31) using a representative trace with higher release temperatures where the tools are used for most of the summer. Currently you are only showing a representative week, but there are important differences with frequencies and timing of these flows throughout the summer. For the alternatives with flow spikes that would show the 3 spikes occurring from June to mid-July. For the Non-Bypass our understanding is that might show 26 fluctuations between May to October. We think that it is not clear to most readers how frequent these flows might be occurring in a hot summer. The graphs in 3.2.1 appear to show monthly volumes over time, but not the actual spikes.
- Lambda graphic: Currently, this graphic is in an appendix and since it is the most important modeling result it should be moved to the main text. It needs some reformatting as its very confusing. The labels should be moved below the axis, the thick lines where most of the results are falling needs a tick off to the side (is it $90 \%, 92 \%, 95 \%$ ?) and should be a dot rather than a line like the other locations. Again, this graphic would be much more useful if it showed only the traces in which temperature exceeds 15.5 C as those are the traces in which the tools are used. Also as suggested above, a table format presentation with the breakout for the months where 15.5 was exceeded with average lambda values would be even more useful.
- Trace graphs to accompany lambda graph: Another two graphs that would be very useful to be presented in the same section accompanying the lambda values would one with the Lake Powell elevation over years and one with the release temperature over years showing all 30 traces. This would illustrate how many traces did not exceed 15.5 C and explain why based on reservoir levels. That is an important part to relay. Again, current graphs in section 3.2.1 appear to show the averaging of all the traces for temperature and lake Powell elevation but seeing the 30 individual traces and seeing them right next to the lambda graph would be much more useful for comprehension of what is happening.
- Improved Routing map in Figure 2-6: This routing map for the Non-Bypass should be relabeled as the term "collapsing trough" is a bit subjective. We actually don't see the trough collapsing by the LCR, it appears to still be a trough at that point. It would be helpful to have stage on the right axis (we think that was intended but it shows as all zeros on the right axis) and a gridded and more clear set of labels and tics on the left-hand axis so we can tell what the minimum flows actually are at the LCR. On the X axis it would be helpful to have time, because one of the assertions of the Non-Bypass alternative is that it won't desiccate invertebrates because its dropping at night but as that wave propagates down it won't be at night but may be in direct sunlight in august daytime temperatures.
- Sediment graphics showing HFEs: NPS recommends breaking these out to show representative trace years in which fall season HFEs occurred vs. those with spring HFEs, as well as for those in which other tools were used (the flow spikes vs. Non-Bypass fluctuations vs. those without any). Currently, these graphics are misleading both in terms of the averaging problem (stated
above) but also it makes it looks like there will be two HFEs a year. This may create concerns for some stakeholders thinking that HFE frequency is increasing when in fact the frequency may decrease slightly from the original LTEMP using the modeling assumptions. We suspect if this is broken out, the frequency of HFEs would decrease the most under Non-Bypass in the years when that tool is used.


## Issues in need of more updated references or additional analysis considerations

- Fully incorporating the implications of the lambda results
- In both Table 2.12 (impact summary table) and section 3.5 (aquatic resources) the lambda modeling results treated separately and almost as if they are an unrelated issue with respect to effects of the alternatives to native and non-native fish. Those results are the best available science for whether the alternative actually meets the purpose and need to either: (1) control the growth and expansion of the warmwater invasive fish populations or not, and (2) minimize impacts of predation on native fish populations or not. Those results are not fully interpreted when they are presented and aren't carried through into the subsections to relay the potential impacts of the alternatives in comparison to no action and each other. For example, the lambda results show that cool mix is keeping lambda well under 1.0 in the warmest years, whereas no action has lambdas well over 1.0 or even over 2.0 in those warmest years. NPS recommends this be interpreted to explain that these results indicate smallmouth bass and other warmwater invasive populations would decline under "Coolmix" and native fish would then not face increasing predation, whereas under no action, smallmouth bass and other warmwater invasive populations would increase and possibly double each year. After a time delay, native fish would be subject to an expanding wave of predation from these fish that would likely impact them at the population level. The most important place to fully incorporate these results is on pages 3-133 and 3-134 for the effects of NonBypass alternatives in terms of how SMB and GSF populations would expand and impact HBC and RBS under no action and Non-Bypass.
- Updating non-native information from 2018-2024 in section 3.5
- Much of the non-native presence and distribution information is cited before 2018. Given the increased river temperatures and presumed entrainment in the last few years, NPS recommends inclusion of literature from 2018-2024 including information presented at the GCMRC Annual Review Meetings. NPS can supply an appendix to the 2019 NPS Expanded Aquatic Non-native Species Management Plan to help, and the Annual Review Meeting (ARM) information should be readily available from GMCRC. GCMRC can also provide access to a shared non-native database and new mapping information for the distributions of non-native fish that should be used in this document, particularly for smallmouth bass, green sunfish, walleye and brown trout. NPS will provide a presentation from the last AMWG that summarizes much of that data and provides details of NPS' rapid response efforts.
- Food base implications from Non-Bypass alternative
- The food base impacts in the plan need improvement and input from GCMRC. The plan currently seems to conclude the Non-Bypass fluctuations from 2000 cfs to 27000 cfs that might occur every week throughout the summer for over 20 times a summer would have little to no impact on food base. These findings are inconsistent with findings of the effects from past HFEs or from past "bugflows" where altered flows, even when occurring only once a year, have shown marked impacts that were positive or negative
to macroinvertebrates or gross primary production (GPP). The plan states that these Non-Bypass flows wouldn't desiccate macroinvertebrates because they are short and at night, citing Blinn 1999. Blinn 1999, looked at effects in early spring from the 1996 Beach Building Flow when temperatures at night were much lower and the frequency of the flow was only once that year. These Non-Bypass flows would occur repeatedly throughout the summer up to over 20 times during much hotter months. Also, the fluctuations do not collapse much by the LCR, so the fluctuation would propagate through Marble Canyon during the day, which would be in hot temperatures in direct sunlight. There may also be some impacts to macroinvertebrates and the food base from the flow spikes or from spring HFEs; however, the frequency of those spikes is limited to 3 per year, they don't involve the drop before the increase, and the timing of those corresponds well with natural pre-dam spring peak flows and that should be noted in the plan. Given the preponderance of studies that indicate natural timed flows are better for many organisms that evolved with that timing (see Poff et al 1997, Poff and Matthews 2013, etc.), NPS requests analysis in the SEIS of timing of flows in relation to natural and historical flow regime.
- Rainbow trout population effects from Non-Bypass alternative
- Several sections of the plan conclude that rainbow trout population would not likely be affected by the Non-Bypass fluctuations despite expected increased mortality in young rainbow trout. The conclusion appears to be based primarily on the Korman 2011 study that found compensatory responses to flows that impact rainbow trout reproduction. However, the current rainbow trout population is at a much lower population than any of the data points that Korman 2011 considered with fewer total reproducing fish. There are also major stressors on the population, including occasional high river temperatures (which vary with alternative), low dissolved oxygen situations (which vary with alternative), increased brown trout predation and competition, and the potential for significantly increased predation from warm water predators (which varies with alternative). Also, the health of the trout population is a recent concern this spring (2024), which may have to do with some impacts from these stressors. NPS recommends these factors be taken into consideration, as assuming a compensatory response no longer seems like a reliable conclusion.

NPS appreciates the close coordination between the agencies within the Department of the Interior. This collaboration has been exceptional and NPS appreciates Reclamation's staff's efforts to integrate the best available science into this analysis and continued coordination for SMB response.
Reclamation has truly risen to the challenge presented by these rapidly changing conditions.
Thank you for the opportunity to comment on this important and expedited process. Please contact Rob Billerbeck, NPS Colorado River Program Coordinator, at 303-987-6789 or rob_p_billerbeck@nps.gov if you have any questions on these comments or wish to discuss further.

Kate Hammond
Regional Director
Department of Interior Regions 6, 7, \& 8
National Park Service

Cc:
Rob Billerbeck, Colorado River Coordinator, National Park Service, DOI Regions 6, 7, \& 8 Ed Keable, Superintendent Grand Canyon National Park
Michelle Kerns, Superintendent Glen Canyon National Recreation Area

Enclosure 1: NPS Technical Comment Matrix

## Literature Cited

Blinn, D.W. J.P. Shannon, K.P. Wilson, C. O'Brien, and P.L. Benenati. 1999. Response of benthos and organic drift to a controlled flood. Pages 259-272 in The Controlled Flood in Grand Canyon, edited by R.H. Webb, J.C. Schmidt, G.R. Marzolf, and R.A. Valdez. Geophysical Monograph 110, American Geophysical Union, Washington, D.C.

Dibble, K., C. Yackulic, T. Kennedy, K. Bestgen, J. Schmidt, 2020, "Water storage decisions will determine the distribution and persistence of imperiled river fishes" https://doi.org/10.1002/eap. 2279 Dill, W.A., and A.J. Cordone. 1997. History and status of introduced fishes in California, 1871-1996. California Department of Fish and Game Fish Bulletin, volume 178.

Hayes, M.P., and M.R. Jennings. 1986. Decline of ranid frog species in western North America: are bullfrogs (Rana catesbeiana) responsible? Journal of Herpetology 20(4):490-059.

Johnson, B. M., P. J. Martinez, J. A. Hawkins, and K. R. Bestgen. 2008. Ranking predatory threats by nonnative fishes in the Yampa River, Colorado, via bioenergetics modeling. North American Journal of Fisheries Management 28: 1941-1953.

Kiesecker JM, Blaustein AR (2008) Effects of introduced bullfrogs and smallmouth bass on microhabitat use, growth, and survival of native red-legged frogs (Rana aurora). Conservation Biology 12(4): 776-787, http://dx.doi.org/10.1111/j.1523-1739.1998.97125.x

Korman, J., and T. S. Melis. 2011. The Effects of Glen Canyon Dam Operations on Early Life Stages of Rainbow Trout in the Colorado River: US Geological Survey Fact Sheet 2011- 3002. Internet website: http://pubs.usgs.gov/fs/2011/3002/.

Olden, J. D., N. L. Poff, and K. R. Bestgen. 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76: 25-40.

Poff, N.L., J. Allan, M. Bain, J. Karr, K. Prestegaard, B. Richter, R. Sparks, and J. Stromberg. 1997. The Natural Flow Regime: A paradigm for river conservation and restoration. BioScience, Volume 47, Issue 11, December 1997, Pages 769-784, https://doi.org/10.2307/1313099

Poff, N.L., and Matthews, J.H. 2013. Environmental flows in the Anthropocence: past progress and future prospects. Current Opinion in Environmental Sustainability 5: 6, 667-675. https://doi.org/10.1016/j.cosust.2013.11.00
Sanderson BL, Barnas KA, Wargo Rub AM (2009) Nonindigenous species of the Pacific Northwest: An overlooked risk to endangered salmon? BioScience 59(3): 245-256, http://dx.doi.org/10.1525/bio.2009.59.3.9




| 2.13 | table 2- | 2-27 | NPS | R <br> Biller <br> k | reduce SMB so SMB is likely to reduce populations of northern leopard frog as they feed on tadpoles. no bypass alternative this alternative reduces lambda compared to no-action but does not stop SMB population growth based on the lambda values, so under this alternative we would expect more impact to northern leopard frog from direct predation on tadpoles than from the other alternatives. We would direct you toward these references from Keisecker and Blaustein 2008 in conservation biology https://doi.org/10.1111/j.1523-1739.1998.97125.x <br>  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.13 | table 2- | 2-27 | NPS | $\begin{aligned} & \text { R } \\ & \text { Billerb } \\ & \text { k } \end{aligned}$ | tribal resources - no action alternative - because no action won't reduce SMB and other warmwater invasive reproduction, then there will have to be more rapid response mech and chemical treatment to try to address these populations, thus increasing fish mortality over time. no bypass alternative because nonbypass won't effectively reduce SMB lambda less than 1, then SMB and other warmwater invasive populations will continue to expand and there will have to be more rapid response mech and chemical treatment to try to address these populations, thus increasing fish mortality over the cooling alternatives. |  |  |  |  |  |  |  |  |
| 2.13 | table 2- 2 | 2-27 | NPS | $\begin{aligned} & \text { R } \\ & \text { Billerb } \\ & k \end{aligned}$ | recreation no bypass alternative - non-bypass alternative Currently this is missing the short term impacts to recreational camping in marble given large stage change during implementation days (will require moving boats on shore multiple times). Also doesn't address long term impacts to camping in Marble canyon from the sandbar/beach erosion and the reduced number of HFEs we would expect from loss of sandmass balance reducing chances of triggering HFEs when compared to other action alternatives. This also doesn't include longterm impacts to recreational rainbow trout fishery from the increased predation impacts from warm water predators we would expect given the lambda values we expect with this alterantive compared to other bypass action alternatives. |  |  |  |  |  |  |  |  |
| 3.2.1 |  | 3-2 | NPS | $\begin{aligned} & \mathrm{R} \\ & \text { Billerbe } \\ & \mathrm{k} \end{aligned}$ | Please change the sentence "Monthly release volumes are based on anticipated power demands, forecasted inflows, and other factors such as storage equalization between Lake Powell and Lake Mead" to say, "Monthly release volumes are based on the monthly pattern of the 2016 LTEMP ROD which takes into account GCPA resource concerns and anticipated power demands, forecasted inflows, and other factors such as storage equalization between Lake Powell and Lake Mead". The monthly volumes ARE NOT based on only hydropower. |  |  |  |  |  |  |  |  |
| 3.2.1 |  | 3-3 | NPS | l $\begin{aligned} & \text { R } \\ & \text { Billerbe } \\ & \mathrm{k}\end{aligned}$ | It says "Long-term and annual release volumes from Lake Powell are detailed in the LTEMP FEIS (Department 2016a)." but this may be misleading to readers as the LTEMP does not set annual releases - annual releases are determined under the 2007 Interim Guidelines and the LROC, not by LTEMP. |  |  |  |  |  |  |  |  |








|  |  |  | 3-72 | NPS | R <br> Billerbec k | The section on Rainbow trout seems to be outdated - only talks about daynamics to about 2018... its missing all the dyanmics and pressures that have been occuring in the last 23 years - increased river temperatures, decreased dissolved oxygen, increased predation/competition. These are important context for why the population is so low right now and related some of the alternatives that would be like to lower river temperature and improve the dissolved oxygen situation. Please see the presentations and graphs of rainbow trout from the GCMRC Annual Review Meeting proceedings from Jan 23252024 to get the necessary updated info that shows the updated and very low population levels, the information about the low dissolved oxygen levels and the increased temperatures. Or if needed I'm sure Brian Healy and Josh Korman could provide the best data and references. This information is critically important as some of the alternatives like the non-bypass may reduce rainbow trout recruitment and the currently low population level and stressors may prevent a compensatory response so your text as well as your analytical conclusions need to be updated with the current population and dyanmics in Lees Ferry. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3-70, $74,75$ | NPS | $\left\lvert\, \begin{aligned} & \mathrm{R} \\ & \text { Billerbec } \\ & \mathrm{k} \end{aligned}\right.$ | The sections on cold-water nonnative Species and brown trout seems to be outdated - only talks about dynamics to about 2015 in much of it with incorrect conslusions or up to 2018 with the Runge report. There is a lot of new info since then. For instance this statement "Because spawning by brown trout in the Grand Canyon occurs primarily in tributaries " is now totally incorrect. It may have been correct in 2014 but hasn't been correct since as we've documented a lot of spawning in Lees Ferry since 2015 - that whole paragraph needs to be updated with what we've seen from 2015-2024 with current population a graphs. Brown trout are no longer 'on the cusp' of recruiting locall hatched fish - they have recruited every year since 2016. Again - please see the presentations and graphs of rainbow trout and brown trout from the GCMRC Annual Review Meeting proceedings from Jan 23-25 2024 to get the necessary updated info that shows the updated and very low population levels of rainbows, the increasing number of browns and , the information about the low dissolved oxygen levels and the increased temperatures. Or if needed I'm sure Brian Healy and Josh Korman could provide the best data and references. |  |  |  |  |  |  |  |
|  |  |  | 3-76 | NPS | R <br> Billerbec <br> $k$ | Table 3-31 is probably very outdated. Please get updated distribution maps for the LCR from GCMRC or FWS. |  |  |  |  |  |  |  |
|  |  |  | 3-78 | NPS | $\begin{aligned} & \mathrm{R} \\ & \mathrm{Billerbec} \end{aligned}$ $\mathrm{k}$ | there are extra characters in this sentence - fix to say improved humpback growth and survival I think. For example, the temperature of water released from Glen Canyon Dam increased during the trout removal study period to temperatures that may have improve" humpback c"ub growth and survival |  |  |  |  |  |  |  |
|  |  |  | $3-79$ | NPS | $\begin{aligned} & \mathrm{M} \\ & \text { Trammel } \\ & \hline \end{aligned}$ | please add a paragraph that interactions between native fish and increasing numbers of SMB and GSF are likely to increase, and that these native fish will be subjected to much higher predation levels from warm water non-native fish as they get established. Increases in smallmouth bass, green sunfish, walleye and others would be very likely to greatly reduce young native fish survival levels. There is abundant evidence from the upper colorado river basin, (Johnson et al. 2008, Bestgen and Hill 2016, Martinez et al. 2014 and other references), that should be stated here to discuss this interaction of smb impacting native fish. |  |  |  |  |  |  |  |




















